Question:
what is data mining and explain something about data mining?
2006-08-02 01:36:05 UTC
what is data mining and explain something about data mining?
Four answers:
Coolkama
2006-08-02 01:47:47 UTC
Data mining (DM), also known as Knowledge-Discovery in Databases (KDD) or Knowledge-Discovery and Data Mining (KDD), is the process of automatically searching large volumes of data for patterns. Data mining is a fairly recent and contemporary topic in computer science. However, Data mining applies many older computational techniques from statistics, information retrieval, machine learning and pattern recognition.
2016-03-15 05:11:34 UTC
I don't think there is that many...but here it goes Data warehousing is storing information about what you do anf give at a web site,your traits at that site, were you go and your credit and identity (if you buy something) Data mining is going into your computer seeing what you have done, your traits, were you go and like to go up to and not withstanding credit and identity, they also pay less than scrupuluos sites for this information also wanderer
Monica
2006-08-02 02:16:22 UTC
DATA MINING

Sifting historical data for evidence that appears to support a premise. Implication is that only favorable data are selected, making the conclusion dubious.



data mining

Exploring and analyzing detailed business transactions. It implies "digging through tons of data" to uncover patterns and relationships contained within the business activity and history. Data mining can be done manually by slicing and dicing the data until a pattern becomes obvious. Or, it can be done with programs that analyze the data automatically. Data mining has become an important part of customer relationship management (CRM). In order to better understand customer behavior and preferences, businesses use data mining to wade through the huge amounts of information gathered via the Web. See data miner, Web mining, OLAP, DSS, EIS, data warehouse and slice and dice.





data mining

Type of database analysis that attempts to discover useful patterns or relationships in a group of data. The analysis uses advanced statistical methods, such as cluster analysis, and sometimes employs artificial intelligence or neural network techniques. A major goal of data mining is to discover previously unknown relationships among the data, especially when the data come from different databases. Businesses can use these new relationships to develop new advertising campaigns or make predictions about how well a product will sell. Governments also use these techniques to discern illegal or embargoed activities by individuals, associations, and other governments.



Data Mining

A type of database application that looks for hidden patterns in large groups of data.



data mining

Extraction of customer information from a database by utilizing software that can isolate and identify previously unknown patterns or trends in large amounts of data. There are a variety of data mining techniques that reveal different types of patterns. For example, data mining a supermarket database could reveal that certain items are purchased together, such as beer and chips, or that other items are purchased sequentially, such as basic pet supplies followed by pet food. Data mining can reveal that purchase patterns for some products have a shared seasonality such as angel food cake, whipped cream, and fresh berries. It can reveal that customers with a shared set of demographic characteristics will purchase like items, shop at similar times and frequencies, be equally brand loyal or disloyal, purchase similar groups of items, or respond to a particular type of promotion.



Data Mining, also known as Knowledge-Discovery in Databases (KDD), is the process of automatically searching large volumes of data for patterns. Data Mining is a fairly recent and contemporary topic in computing. However, Data Mining applies many older computational techniques from statistics, machine learning and pattern recognition.



Definition

Data Mining can be defined as "The nontrivial extraction of implicit, previously unknown, and potentially useful information from data" [1] and "The science of extracting useful information from large data sets or databases" [2]. Although it is usually used in relation to analysis of data, data mining, like artificial intelligence, is an umbrella term and is used with varied meaning in a wide range of contexts. It is usually associated with a business or other organization's need to identify trends. Data mining involves the process of analysing data to show patterns or relationships; sorting through large amounts of data; and picking out pieces of relative information or patterns that occur e.g., picking out statistical information from some data



A simple example of data mining is its use in a retail sales department. If a store tracks the purchases of a customer and notices that a customer buys a lot of silk shirts, the data mining system will make a correlation between that customer and silk shirts. The sales department will look at that information and may begin direct mail marketing of silk shirts to that customer, or it may alternatively attempt to get the customer to buy a wider range of products. In this case, the data mining system used by the retail store discovered new information about the customer that was previously unknown to the company. Another widely used (though hypothetical) example is that of a very large North American chain of supermarkets. Through intensive analysis of the transactions and the goods bought over a period of time, analysts found that beers and diapers were often bought together. Though explaining this interrelation might be difficult, taking advantage of it, on the other hand, should not be hard (e.g. placing the high-profit diapers next to the high-profit beers). This technique is often referred to as Market Basket Analysis.



In statistical analyses, in which there is no underlying theoretical model, data mining is often approximated via stepwise regression methods wherein the space of 2k possible relationships between a single outcome variable and k potential explanatory variables is smartly searched. With the advent of parallel computing, it became possible (when k is less than approximately 40) to examine all 2k models. This procedure is called all subsets or exhaustive regression. Some of the first applications of exhaustive regression involved the study of plant data.[3]



Data dredging

Used in the technical context of data warehousing and analysis, the term "data mining" is neutral. However, it sometimes has a more pejorative usage that implies imposing patterns (and particularly causal relationships) on data where none exist. This imposition of irrelevant, misleading or trivial attribute correlation is more properly criticized as "data dredging" in the statistical literature. Another term for this misuse of statistics is data fishing.



Used in this latter sense, data dredging implies scanning the data for any relationships, and then when one is found coming up with an interesting explanation. (This is also referred to as "overfitting the model".) The problem is that large data sets invariably happen to have some exciting relationships peculiar to that data. Therefore any conclusions reached are likely to be highly suspect. In spite of this, some exploratory data work is always required in any applied statistical analysis to get a feel for the data, so sometimes the line between good statistical practice and data dredging is less than clear.



One common approach to evaluating the fitness of a model generated via data mining techniques is called cross validation. Cross validation is a technique that produces an estimate of generalization error based on resampling. In simple terms, the general idea behind cross validation is that dividing the data into two or or more separate data subsets allows one subset to be used to evaluate the generalizeability of the model learned from the other data subset(s). A data subset used to build a model is called a training set; the evaluation data subset is called the test set. Common cross validation techniques include the holdout method, k-fold cross validation, and the leave-one-out method.



Another pitfall of using data mining is that it may lead to discovering correlations that may not exist. "There have always been a considerable number of people who busy themselves examining the last thousand numbers which have appeared on a roulette wheel, in search of some repeating pattern. Sadly enough, they have usually found it." [4]. However, when properly done, determining correlations in investment analysis has proven to be very profitable for statistical arbitrage operations (such as pairs trading strategies), and furthermore correlation analysis has shown to be very useful in risk management. Indeed, finding correlations in the financial markets, when done properly, is not the same as finding false patterns in roulette wheels.



Most data mining efforts are focused on developing highly detailed models of some large data set. Other researchers have described an alternate method that involves finding the minimal differences between elements in a data set, with the goal of developing simpler models that represent relevant data. [5]



Privacy concerns

There are also privacy concerns associated with data mining - specifically regarding the source of the data analyzed. For example, if an employer has access to medical records, they may screen out people who have diabetes or have had a heart attack. Screening out such employees will cut costs for insurance, but it creates ethical and legal problems.



Data mining government or commercial data sets for national security or law enforcement purposes has also raised privacy concerns. [6]



There are many legitimate uses of data mining. For example, a database of prescription drugs taken by a group of people could be used to find combinations of drugs exhibiting harmful interactions. Since any particular combination may occur in only 1 out of 1000 people, a great deal of data would need to be examined to discover such an interaction. A project involving pharmacies could reduce the number of drug reactions and potentially save lives. Unfortunately, there is also a huge potential for abuse of such a database.



Essentially, data mining gives information that would not be available otherwise. It must be properly interpreted to be useful. When the data collected involves individual people, there are many questions concerning privacy, legality, and ethics.



Combinatorial game data mining

Data mining from combinatorial game oracles:

Since the early 1990s, with the availability of oracles for certain combinatorial games, also called tablebases (e.g. for 3x3-chess) with any beginning configuration, small-board dots-and-boxes, small-board-hex, and certain endgames in chess, dots-and-boxes, and hex; a new area for data mining has been opened up. This is the extraction of human-usable strategies from these oracles. This is pattern-recognition at too high an abstraction for known Statistical Pattern Recognition algorithms or any other algorithmic approaches to be applied: at least, no one knows how to do it yet (as of January 2005). The method used is the full force of Scientific Method: extensive experimentation with the tablebases combined with intensive study of tablebase-answers to well designed problems, combined with knowledge of prior art i.e. pre-tablebase knowledge, leading to flashes of insight. Berlekamp in dots-and-boxes etc. and John Nunn in chess endgames are notable examples of people doing this work, though they were not and are not involved in tablebase generation.



Notable uses of data mining

Data mining has been cited as the method by which the U.S. Army unit Able Danger supposedly had identified the 9/11 attack leader, Mohamed Atta, and three other 9/11 hijackers as possible members of an al Qaeda cell operating in the U.S. more than a year before the attack.

See also: Able Danger, wikinews:U.S. Army intelligence had detected 9/11 terrorists year before, says officer.

As is the case for economic models which successfully predict 10 of the last 3 recessions, one must of course know which other names came up on the "possible members" list before being confident this was not an exercise in data dredging.
ruchira
2006-08-02 01:47:35 UTC
Data mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. The automated, prospective analyses offered by data mining move beyond the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools can answer business questions that traditionally were too time consuming to resolve. They scour databases for hidden patterns, finding predictive information that experts may miss because it lies outside their expectations.



Most companies already collect and refine massive quantities of data. Data mining techniques can be implemented rapidly on existing software and hardware platforms to enhance the value of existing information resources, and can be integrated with new products and systems as they are brought on-line. When implemented on high performance client/server or parallel processing computers, data mining tools can analyze massive databases to deliver answers to questions such as, "Which clients are most likely to respond to my next promotional mailing, and why?"



This white paper provides an introduction to the basic technologies of data mining. Examples of profitable applications illustrate its relevance to today’s business environment as well as a basic description of how data warehouse architectures can evolve to deliver the value of data mining to end users.



The Foundations of Data Mining



Data mining techniques are the result of a long process of research and product development. This evolution began when business data was first stored on computers, continued with improvements in data access, and more recently, generated technologies that allow users to navigate through their data in real time. Data mining takes this evolutionary process beyond retrospective data access and navigation to prospective and proactive information delivery. Data mining is ready for application in the business community because it is supported by three technologies that are now sufficiently mature:



Massive data collection

Powerful multiprocessor computers

Data mining algorithms

Commercial databases are growing at unprecedented rates. A recent META Group survey of data warehouse projects found that 19% of respondents are beyond the 50 gigabyte level, while 59% expect to be there by second quarter of 1996.1 In some industries, such as retail, these numbers can be much larger. The accompanying need for improved computational engines can now be met in a cost-effective manner with parallel multiprocessor computer technology. Data mining algorithms embody techniques that have existed for at least 10 years, but have only recently been implemented as mature, reliable, understandable tools that consistently outperform older statistical methods.



In the evolution from business data to business information, each new step has built upon the previous one. For example, dynamic data access is critical for drill-through in data navigation applications, and the ability to store large databases is critical to data mining.

The core components of data mining technology have been under development for decades, in research areas such as statistics, artificial intelligence, and machine learning. Today, the maturity of these techniques, coupled with high-performance relational database engines and broad data integration efforts, make these technologies practical for current data warehouse environments.



The Scope of Data Mining



Data mining derives its name from the similarities between searching for valuable business information in a large database — for example, finding linked products in gigabytes of store scanner data — and mining a mountain for a vein of valuable ore. Both processes require either sifting through an immense amount of material, or intelligently probing it to find exactly where the value resides. Given databases of sufficient size and quality, data mining technology can generate new business opportunities by providing these capabilities:



Automated prediction of trends and behaviors. Data mining automates the process of finding predictive information in large databases. Questions that traditionally required extensive hands-on analysis can now be answered directly from the data — quickly. A typical example of a predictive problem is targeted marketing. Data mining uses data on past promotional mailings to identify the targets most likely to maximize return on investment in future mailings. Other predictive problems include forecasting bankruptcy and other forms of default, and identifying segments of a population likely to respond similarly to given events.

Automated discovery of previously unknown patterns. Data mining tools sweep through databases and identify previously hidden patterns in one step. An example of pattern discovery is the analysis of retail sales data to identify seemingly unrelated products that are often purchased together. Other pattern discovery problems include detecting fraudulent credit card transactions and identifying anomalous data that could represent data entry keying errors.

Data mining techniques can yield the benefits of automation on existing software and hardware platforms, and can be implemented on new systems as existing platforms are upgraded and new products developed. When data mining tools are implemented on high performance parallel processing systems, they can analyze massive databases in minutes. Faster processing means that users can automatically experiment with more models to understand complex data. High speed makes it practical for users to analyze huge quantities of data. Larger databases, in turn, yield improved predictions.



Databases can be larger in both depth and breadth:



More columns. Analysts must often limit the number of variables they examine when doing hands-on analysis due to time constraints. Yet variables that are discarded because they seem unimportant may carry information about unknown patterns. High performance data mining allows users to explore the full depth of a database, without preselecting a subset of variables.

More rows. Larger samples yield lower estimation errors and variance, and allow users to make inferences about small but important segments of a population.

A recent Gartner Group Advanced Technology Research Note listed data mining and artificial intelligence at the top of the five key technology areas that "will clearly have a major impact across a wide range of industries within the next 3 to 5 years."2 Gartner also listed parallel architectures and data mining as two of the top 10 new technologies in which companies will invest during the next 5 years. According to a recent Gartner HPC Research Note, "With the rapid advance in data capture, transmission and storage, large-systems users will increasingly need to implement new and innovative ways to mine the after-market value of their vast stores of detail data, employing MPP [massively parallel processing] systems to create new sources of business advantage (0.9 probability)."3



The most commonly used techniques in data mining are:



Artificial neural networks: Non-linear predictive models that learn through training and resemble biological neural networks in structure.

Decision trees: Tree-shaped structures that represent sets of decisions. These decisions generate rules for the classification of a dataset. Specific decision tree methods include Classification and Regression Trees (CART) and Chi Square Automatic Interaction Detection (CHAID) .

Genetic algorithms: Optimization techniques that use processes such as genetic combination, mutation, and natural selection in a design based on the concepts of evolution.

Nearest neighbor method: A technique that classifies each record in a dataset based on a combination of the classes of the k record(s) most similar to it in a historical dataset (where k ³ 1). Sometimes called the k-nearest neighbor technique.

Rule induction: The extraction of useful if-then rules from data based on statistical significance.

Many of these technologies have been in use for more than a decade in specialized analysis tools that work with relatively small volumes of data. These capabilities are now evolving to integrate directly with industry-standard data warehouse and OLAP platforms. The appendix to this white paper provides a glossary of data mining terms.



How Data Mining Works



How exactly is data mining able to tell you important things that you didn't know or what is going to happen next? The technique that is used to perform these feats in data mining is called modeling. Modeling is simply the act of building a model in one situation where you know the answer and then applying it to another situation that you don't. For instance, if you were looking for a sunken Spanish galleon on the high seas the first thing you might do is to research the times when Spanish treasure had been found by others in the past. You might note that these ships often tend to be found off the coast of Bermuda and that there are certain characteristics to the ocean currents, and certain routes that have likely been taken by the ship’s captains in that era. You note these similarities and build a model that includes the characteristics that are common to the locations of these sunken treasures. With these models in hand you sail off looking for treasure where your model indicates it most likely might be given a similar situation in the past. Hopefully, if you've got a good model, you find your treasure.



This act of model building is thus something that people have been doing for a long time, certainly before the advent of computers or data mining technology. What happens on computers, however, is not much different than the way people build models. Computers are loaded up with lots of information about a variety of situations where an answer is known and then the data mining software on the computer must run through that data and distill the characteristics of the data that should go into the model. Once the model is built it can then be used in similar situations where you don't know the answer. For example, say that you are the director of marketing for a telecommunications company and you'd like to acquire some new long distance phone customers. You could just randomly go out and mail coupons to the general population - just as you could randomly sail the seas looking for sunken treasure. In neither case would you achieve the results you desired and of course you have the opportunity to do much better than random - you could use your business experience stored in your database to build a model.



As the marketing director you have access to a lot of information about all of your customers: their age, sex, credit history and long distance calling usage. The good news is that you also have a lot of information about your prospective customers: their age, sex, credit history etc. Your problem is that you don't know the long distance calling usage of these prospects (since they are most likely now customers of your competition).

An Architecture for Data Mining



To best apply these advanced techniques, they must be fully integrated with a data warehouse as well as flexible interactive business analysis tools. Many data mining tools currently operate outside of the warehouse, requiring extra steps for extracting, importing, and analyzing the data. Furthermore, when new insights require operational implementation, integration with the warehouse simplifies the application of results from data mining. The resulting analytic data warehouse can be applied to improve business processes throughout the organization, in areas such as promotional campaign management, fraud detection, new product rollout, and so on.







The ideal starting point is a data warehouse containing a combination of internal data tracking all customer contact coupled with external market data about competitor activity. Background information on potential customers also provides an excellent basis for prospecting. This warehouse can be implemented in a variety of relational database systems: Sybase, Oracle, Redbrick, and so on, and should be optimized for flexible and fast data access.



An OLAP (On-Line Analytical Processing) server enables a more sophisticated end-user business model to be applied when navigating the data warehouse. The multidimensional structures allow the user to analyze the data as they want to view their business – summarizing by product line, region, and other key perspectives of their business. The Data Mining Server must be integrated with the data warehouse and the OLAP server to embed ROI-focused business analysis directly into this infrastructure. An advanced, process-centric metadata template defines the data mining objectives for specific business issues like campaign management, prospecting, and promotion optimization. Integration with the data warehouse enables operational decisions to be directly implemented and tracked. As the warehouse grows with new decisions and results, the organization can continually mine the best practices and apply them to future decisions.



This design represents a fundamental shift from conventional decision support systems. Rather than simply delivering data to the end user through query and reporting software, the Advanced Analysis Server applies users’ business models directly to the warehouse and returns a proactive analysis of the most relevant information. These results enhance the metadata in the OLAP Server by providing a dynamic metadata layer that represents a distilled view of the data. Reporting, visualization, and other analysis tools can then be applied to plan future actions and confirm the impact of those plans.



Profitable Applications



A wide range of companies have deployed successful applications of data mining. While early adopters of this technology have tended to be in information-intensive industries such as financial services and direct mail marketing, the technology is applicable to any company looking to leverage a large data warehouse to better manage their customer relationships. Two critical factors for success with data mining are: a large, well-integrated data warehouse and a well-defined understanding of the business process within which data mining is to be applied (such as customer prospecting, retention, campaign management, and so on).



Some successful application areas include:



A pharmaceutical company can analyze its recent sales force activity and their results to improve targeting of high-value physicians and determine which marketing activities will have the greatest impact in the next few months. The data needs to include competitor market activity as well as information about the local health care systems. The results can be distributed to the sales force via a wide-area network that enables the representatives to review the recommendations from the perspective of the key attributes in the decision process. The ongoing, dynamic analysis of the data warehouse allows best practices from throughout the organization to be applied in specific sales situations.

A credit card company can leverage its vast warehouse of customer transaction data to identify customers most likely to be interested in a new credit product. Using a small test mailing, the attributes of customers with an affinity for the product can be identified. Recent projects have indicated more than a 20-fold decrease in costs for targeted mailing campaigns over conventional approaches.

A diversified transportation company with a large direct sales force can apply data mining to identify the best prospects for its services. Using data mining to analyze its own customer experience, this company can build a unique segmentation identifying the attributes of high-value prospects. Applying this segmentation to a general business database such as those provided by Dun & Bradstreet can yield a prioritized list of prospects by region.



A large consumer package goods company can apply data mining to improve its sales process to retailers. Data from consumer panels, shipments, and competitor activity can be applied to understand the reasons for brand and store switching. Through this analysis, the manufacturer can select promotional strategies that best reach their target customer segments.

Each of these examples have a clear common ground. They leverage the knowledge about customers implicit in a data warehouse to reduce costs and improve the value of customer relationships. These organizations can now focus their efforts on the most important (profitable) customers and prospects, and design targeted marketing strategies to best reach them.



Conclusion



Comprehensive data warehouses that integrate operational data with customer, supplier, and market information have resulted in an explosion of information. Competition requires timely and sophisticated analysis on an integrated view of the data. However, there is a growing gap between more powerful storage and retrieval systems and the users’ ability to effectively analyze and act on the information they contain. Both relational and OLAP technologies have tremendous capabilities for navigating massive data warehouses, but brute force navigation of data is not enough. A new technological leap is needed to structure and prioritize information for specific end-user problems. The data mining tools can make this leap. Quantifiable business benefits have been proven through the integration of data mining with current information systems, and new products are on the horizon that will bring this integration


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...